Evaluating Computer Programs: Tools and Assessment
Wajeeh Daher
Abstract:

One goal of this paper is to review efforts that attempt to provide tools
for evaluating computer programs in general and educational computer
programs in particular. These tools include open tools and closed tools in
the form of ‘forms’ which in turn include an online form which gives the
score for the computer program which you evaluate, depending on your
own evaluation. Another goal is to review researches that assess how
teachers and preservice teachers assess computer programs. This would
serve teachers and preservice teachers to select evaluation tools that fit their
own needs and benefit from past experiences of teachers and preservice

teachers who evaluated computer programs.

General tools:
Software attributes:

Buckleitner (1999) suggests considering the following aspects when
evaluating software: (1) What is software? (2) What is the intended purpose
of the software, and where is the software intended to be used? (3) What is
the developmental level of the intended audience? (4) How does the software
compare with similarly designed, competitive products? (5) What theoretical
orientation do you bring to the software evaluation process? (6) Does the
software take advantage of the latest technology? (7) What is the history of
the software in question, and what is the current "state of the art" of
comparable software?

Wheeler (2005) suggests a general approach to evaluate computer
programs, especially Open Source Software, where ‘open source software’
programs are ‘programs whose licenses give users the freedom to run the

program for any purpose, to study and modify the program, and to

78 imio (9 535 cimls



redistribute copies of either the original or modified program (without
having to pay royalties to previous developers)’. This general approach is
based on four steps: identifying candidates, reading existing reviews,
comparing the leading programs' attributes to one’s needs, and then
performing an in-depth analysis of the top candidates. Important attributes to
consider include functionality, cost, market share, support, maintenance,
reliability, performance, scaleability, usability, security, flexibility, and
legal/license issues. Below I describe each one of the criteria and aspects

depending on Wheeler (ibid).

Identifying candidates:

Wheeler suggests that, in order to identify programs’ candidates for the
program that you need, you should ‘ask friends and co-workers, particularly
if they also need or have used such a program’, not only to ask but ‘If they
have experience with it, ask for their critique; this will be useful as an input
for the next step’. Wheeler also suggests searching the internet for the
program that you need and suggests some search engines like ‘google’ and

gives tips on how to do the search.

Reading existing reviews:

Wheeler suggests that after identifying the options and reading existing
evaluations about the alternatives, it's time for learning about a program's
strengths and weaknesses from a few reviews, which would be better than
trying to discern that information just from project websites. Here too,
Wheeler gives suggestions how to search for the reviews and how to be

careful regarding biased reviews.

79 imio 9 538 cinls



Comparing the leading programs' attributes to one’s needs:

The goal of comparing the leading programs’ attributes is to shorten the
list of realistic alternatives to a few "most likely" candidates’ and suggests to
perform the comparison after reading a few reviews, because ‘the reviews
may have identified some important attributes you might have forgotten or
not realized were important’. Wheeler notes that often we can quickly

eliminate all but a few candidates.

Performing an in-depth analysis of the top candidates:

Wheeler suggests that the attributes to be considered, in the in-depth
analysis of the top candidates should include: functionality, cost, market
share, support, maintenance, reliability, performance, scaleability, usability,
security, flexibility, and legal/license issues. These attributes are described

below in more detail.

=  Functionality:
Does the program do what you want it to do?

Issues that should be considered when considering ‘functionality’:
‘how well it integrates and is compatible with existing components you
have’, ‘If there are relevant standards (de jure or de facto), does the
program support them?’, ‘If you exchange data with others using them,
how well does it do so?’, and ‘will the hardware, operating systems,

and related programs it requires be acceptable to you?’.

80 Lxio 9 vae cimls



Cost:

When considering costs, we should consider all costs related to
deploying a program, which is done by computing the total cost of
ownership (all costs related to deploying the program over a period of
time) or as a return for investment (by comparing the total costs to the
total benefits), over a fixed period of time. Wheeler emphasizes that
the costs that we consider should include for each option all costs,
‘such as initial license fees, installation costs, training costs,
support/maintenance costs, license upgrade fees, transition costs (such
as data transition and/or transitions to upgrades), and the costs of any

necessary hardware’.

Market share:

This aspect is concerned of ‘how popular a computer program is’.

Support:

“The term "support" covers several areas: training users on how to
use the product, installing the product, and answering users who have
specific problems trying to use a working product (including

suggesting work-arounds for weaknesses in the current product).

Maintenance/Longevity:

When examining the maintenance we should first examine the
developer mailing list archives for evidence that the developers are
discussing improvements to the software, whether there are multiple
developers (so that if one is lost, the project will easily continue) and
whether the developers regularly check regarding improvements and

bug fixes. We also examine here if their version management

81 izio (9 sas cimls



information is accessible to the public and in general whether there is

evidence that the software is under continuous development.

Reliability:

Wheeler remarks that reliability is difficult to measure and depends
on how the program is used. It should be noted that problem reports are
not necessarily a sign of poor reliability. The best way to measure

reliability is to try it on a "real" work load.

Performance:
The best way to measure performance is to try the computer program

on a "real" work load specific to our circumstance.

Scaleability:
Wheeler describes scaleability as the size of data or problem that the
program can handle. Examining scaleability means finding some

evidence that the program has been used the way we want or expect.

Useability:
Useability concerns measuring ‘the quality of the human-machine
interface for its intended user’. A highly useable program is a program

which is easier to learn and easier to use.

Security:
Evaluating a product's security is related to the specific environment
that the user requests and different environments impose different

security requirements on the same product.

Flexibility:
Flexibility measures how well a program can be used to handle

unusual circumstances that the program wasn't originally designed for.

82 Lrio (9 vae dimls



Examining flexibility means looking if there are mechanisms that make

the program adaptable for new purposes.

»  Legal/license issues:
Legal issues are primarily defined by a program's license. Examining
license issue means examining the license requirements for each
program that we consider, as well as their implications in the country

where we want to use the computer’.

Quality factors:

Martin and Shafer (1996) suggest seven ‘quality factors’ which could serve
to measure the four ‘quality areas’: maintainability, evolvability, portability
and descriptiveness. The factors are: consistency; independence; modularity,
documentation, self-descriptiveness, anomaly control and design simplicity.
The relationships between these seven quality factors and the four quality

areas are shown in figure (1) below:

Maintainability

o 15% 15% 15%
| Self-Descriptiveness Design Consistency Anomaly Control
Simplicity -

Evolvability

Modularity

25% 20% / 10%
Design Anomaly Documentation
Simplicity Contral

Portability

Modularity

Self-Descriptiveness

Independence Self-Descriptiveness

20% 15%

| Modularity | | Documentation |

‘ Descriptiveness '

0% 0%

Self-Descriptiveness | | Documentation

Figure 1: Quality Areas to Quality Factors Map

83 Laio (9 vae dimls



Note that the four ‘quality areas’ are defined by their components and the

percentages of these components described in figure (1).

Martin and Shafer summarize representative questions showing the seven

factors as follows:

Consistency: Have the project products (code and documentation) been
built with a uniform style to a documented standard?

Independence: Have ties to specific systems, extensions, etc. been
minimized to facilitate eventual migration, evolution, and/or
enhancement of the project?

Modularity: Has the code been structured into manageable segments
which minimize gross coupling and simplify understanding?
Documentation: Is the hard copy documentation adequate to support
maintenance, porting, enhancement and re-engineering of the project?
Self-Descriptiveness: Does the embedded documentation, naming
conventions, etc. provide sufficient and succinct insight into the
functioning of the code itself?

Anomaly Control: Have provisions for comprehensive error handling
and exception processing been detailed and applied?

Design Simplicity: Does the code lend itself to legibility and traceability

where dynamic behavior can be readily predicted from static analysis?

Software product evaluation standard:

(From the International Organization for Standardization)

Dobrica and Niemela (2002) describe the software product evaluation

standard from the International Organization for Standardization. This

international standard defines six characteristics that describe, with minimal

overlap, software quality.

Functionality

84 Lrio 9 vae imls



« Reliability

«  Usability

- Efficiency

o Maintainability
«  Portability

Below is the description of every characteristic as stated in Dobrica and

Niemela (2002):

Functionality:
Functionality is the set of attributes that bear on the existence of a set of
functions and their specified properties. The functions are those that satisfy

stated or implied needs.

Reliability:
Reliability is the set of attributes that bear on the capability of software to
maintain its level of performance under stated conditions for a stated period

of time.

Usability:
Usability is the set of attributes that bear on the effort needed for use, and

on the individual assessment of such use, by a stated or implied set of users.

Efficiency:
Efficiency is the set of attributes that bear on the relationship between the
level of performance of the software and the amount of resources used,

under stated conditions.

Maintainability:
Maintainability is the set of attributes that bear on the effort needed to

make specified modifications.

85 isio (9 sxs cimls



Portability:
Portability is the set of attributes that bear on the ability of software to be

transferred from one environment to another.

Educational evaluation tools:

The three tools that we described for evaluating computer software have
some components in common and vary in other components, but they are all
tools for evaluating general computer programs. Educators were interested in
tools for evaluating educational computer programs. We describe some of
the tools developed for the evaluation of educational programs.

Fernandez (1997) talks about four main areas to address when evaluating
educational programs:

o Content - subject matter, aims and objectives, bias, concepts introduced,
relevance, flexibility and teaching style.

e Usage - preparation required by the students and teachers, prerequisite
knowledge, operation in the lecture theatre/laboratory, technical details,
follow-up activities.

e Features - operation of the software, input of data, presentation of
material, program structure, level of customization available.

e Support materials - technical and user manuals, availability and quality
of teacher and student materials (lesson plans, work sheets, etc.),

packaging.

We see that each of the four main areas that Fernandez describes is
involved with the educational side of the computer program, for example,
the ‘Features’ area, is concerned, among other things, with the presentation

of the study material.

86 ixio (9 sae (imls



Gerdt, Miraftabi and Tukiainen (2002) present an outline of a checklist,
the TUP-model, that covers the technical, usability, and pedagogical aspects
of the educational environment so that more complete evaluations may be
created. Each of the three aspects includes several different issues. The
technical aspect includes the availability, maintainability and ease of initial
setup and administration of the environment. The usability aspect includes
the learnability, efficiency, and memorability of the user interface. Gerdt,
Miraftabi and Tukiainen add to the three components the issue of perceptual
and motor factors: “in addition to the three focus areas we need to evaluate
how well the environment takes into account perceptual and motor factors as
well as the information factors related to the environment’s use” and talk
about the overlap area between the technical and usability aspects: “An
overlap between the technical and usability aspects can be found when the
visual aesthetics and internationalization abilities of the environment are
taken into account”. The third component; the pedagogic context includes
the aspects: supported educational approaches, pedagogic soundness of the
content, supported types of the interaction, the possible integration of the
evaluated software environment with other educational materials. Gerdt,
Miraftabi and Tukiainen remark that ‘Focus on how the environment
motivates its users (e.g. internal vs. external motivation) and the
environment’s support for self-evaluation chart more learner-related

characteristics is needed’.

Stamelos et. al (2000) describe a twofold process for evaluating
educational software: the educational aspect and the technical aspect. The
technical aspect includes the same six features that we saw before in
‘Software product evaluation standard from the International Organization

for Standardization’. Stamelos et. al (ibid) describe thoroughly each of the

87 izio (9 sas (imls



features. It should be noted that here each of the features is divided further
into other features that make the functions of the original features more
obvious than in the other attributes and features that I described above. The

features with their sub-features are described below.

Functionality:

Functionality is defined as the degree of existence of a set of functions that
satisfy stated or implied needs and their properties. In the case of educational
software, these functions and properties may concern the coverage of one or
more required subjects, the presence of experiments, various types of
exercises, etc. Functionality includes the following aspects:

o Suitability which is the degree of presence of a set of functions for
specified tasks.

o Accuracy which is the degree of provision of right or agreed results or
effects.

o Interoperability which is the degree to which the software is able to
interact with the specified systems (i.e. physical devices).

o Compliance which is the degree to which the software adheres to
application-related standards, conventions or regulations in laws and
similar prescriptions.

o Security which is the degree to which the software is able to prevent
unauthorized access, whether accidental or deliberative, to programs and

data (i.e. login functions, encryption of personal data, etc.).

Reliability:
(Exactly as previously defined by the International Organization for
Standardization)

Reliability includes the following aspects:

88 Laio (9 vae (imls



Maturity which is the frequency of failure by faults in the software. In
general, any fault due to software problems is unacceptable for
educational software.

Fault tolerance which is the ability to maintain a specified level of
performance in cases of software faults or infringement of its specified
interface.

Recoverability which is the capability of software to reestablish its level

of performance and recover the data directly affected in case of failure.

Usability:

Usability is defined as the effort needed for the use by a stated or implied

set of users. This attribute affects also the educational effectiveness of a

software product, since if the product is hard to use, the attention of the

trainee is mostly focused in the software itself, than in its educational

content. Usability includes the following aspects:

Understandability which is the user’s effort for recognizing the
underlying concept of the software. This effort could be decreased by the
existence of demonstrations.

Learnability which is the user’s effort for learning how to use the
software.

Operability which is the user’s effort for operation and operation control

(e.g. mouse support, shortcuts, etc.).

Efficiency:

(Exactly as previously defined by the International Organization for

Standardization)

Efficiency includes the following aspects:

89 Lrio (9 vae dimls



Time behavior which is the software’s response and processing times
and ‘throughput’ rates in performing its function.
Resource utilization which is the amount of resources and the duration

of such use in performing the software’s functions.

Maintainability:

(Exactly as previously defined by the International Organization for

Standardization)

Maintainability includes the following aspects:

Analyzability which is the effort needed for diagnosis of inefficiencies
or cause of failure or for identification of parts to be modified.
Changeability which is the effort needed for modification, fault removal
or for environmental change.

Stability is the risk of unexpected effects of modifications.

Testability is the effort needed for validating the modified software.

Portability:

(Exactly as previously defined by the International Organization for

Standardization)

Portability includes the following aspects:

Adaptability which is the software’s opportunity for adaptation to
different environments.

Installability which is the effort needed to install the software in a
specified environment.

Conformance which is the degree to which the software adheres to
standards or conventions related to portability.

Replaceability which is the opportunity and effort of using the software

in the place of specified older software.

90 irio 9 sas (il



Evaluating the educational effectiveness:
Stamelos et al (2000) state that, in contrast to the technical aspect, there is no
broadly accepted model for assessing the educational effectiveness of the

software, for the following reasons:

o It’s very hard to describe the context of all possible educational software
evaluation problems with a single attribute framework. The process of
evaluation carried out by a teacher or a student would be different from

the process of evaluation carried out by an educational institution.

o There are several types of educational software products, for example
‘drill and practice’, ‘tutorials’, simulations’, instructional games, and
‘problem solving’. Stamelos et al say that each of these software types

may need different evaluation attributes or aspects.

o An educational software product may have such original characteristics

that prevent the use of a predefined set of evaluation attributes.

Stamelos et al proposed a set of educational attributes for evaluating the
education aspect of a software product, not before they remarked that this set
of attributes must be viewed as a general evaluation framework that in most
cases should be adapted to the specific circumstances of an evaluation
problem. The educational aspect that Stamelos et al propose has two parts
which are by themselves decomposed into other aspects. Table (1) shows

this construct as in Stamelos et at (2000).

91 imie 9 sas cimls



Educational features

Target users’ specification.

Information for topics addressed and learning objectives.
Instructional support materials.

Adaptation to individual needs.

Strategies for enhancing engagement, attention and
memory.

Usage of the product.

Encouragement of critical thinking.

User performance assessment.

Content

Quality of content.
Appropriateness

structure

Table 1: Educational effectiveness category

Following is the description of each aspect as in Stamelos et at (ibid):
Target users’ specification: The software packaging or the accompanying
reference materials must clearly inform about the approximate age of the

target users and about the prerequisite level of knowledge or skills

recommended for best use of the software.

92 isio 9 sas (il




Information for topics addressed and learning objectives:

It’s very important that instructors and educators are provided with clear
and comprehensive information concerning both the topics that the
educational software deals with and the learning objectives that it aims to
achieve. Obviously the topics addressed by the software must be relevant to
the set of learning objectives, so as to enable users to achieve them, and the
learning objectives must be appropriate for the target users’ age and
competence. When educational software is designed for classroom use to
ensure that the software is a valuable educational resource, the topics
covered and the learning objectives must be compatible with the educational

system of the country where the software is used.

Instructional support materials:

They help not only instructors but also users to focus upon the
potentialities of the software. They give suggestions on the various teaching
strategies instructors can adopt using it in the classroom and inform about

how the program can be fitted into a larger framework of instruction, etc.

Adaptation to individual needs:
This aspect has four sub-aspects:

o Feedback: the software product provides feedback information that is
not stereotyped, but appropriate for the situation and the users’
performance.

o Possibility to follow different learning routes (exploratory learning
environments).

o Differentiation of the level of difficulty in respect with the user’s
performance.

o Level of interactivity.

93 inio 9 sas (il



Strategies for enhancing engagement, attention and memory:

This aspect has the following sub-aspects:

« User motivation which is achieved when the software is able to:

e}

O

Show the users the usefulness of what they learn.

Set clear goals and provide indication of how the user is proceeding
periodically.

Encourage users to envision themselves in an imaginary context or
event where they can use the information they are learning.

Inspire cognitive curiosity by giving partial information, elements of
surprise, stimulating desire to know, etc.

Inspire sensory curiosity using sound, visual stimuli, etc.

Provide a level of user control, keeping always in mind that too

much user control can be detrimental.

Other characteristics related to user motivation are:

Confidence: provide reasonable opportunity to be successful.
Competition with the other users (students).

Competition with the computer.

Competition with the user himself/herself.

Competition with the clock.

Adjunct reinforcement: Follow the successful completion of any

activity with an activity that the user (student) finds enjoyable.

o Varied tasks and activities: the diversity in the way in which the user

performs various tasks.

« Retention of information: Retention of information is encouraged when

the difficulties are well distributed throughout the program, the topics

are clearly connected and summaries of the main topics covered in each

preceding section are provided.

94 inio 9 sas (luls



Usage of educational software: 1t’s very important to consider the possible
usage of the educational software as learning resource in the classroom or by
a single user as self-instructional resource, whether it can be useful for the

administration of tests, or can be used only for instructor-led tuition.

Encouragement of critical thinking: the degree to which the program
provides critical thinking and decision making activities that entail inductive
or deductive reasoning and problem-solving skills must be taken into

account.

User’s performance assessment: For true and actual learning to take place,
it is important that the educational software allows the users to constantly

monitor and assess their learning progress.

Content
The content of an educational software product has three aspects:
Quality of content: The quality of the content is analyzed with the
following attributes:
e Accuracy: measures the absence of inaccuracies in the content presented
by the software.
o Clear formulation of the content so as to be easily understandable.
o Completeness: Capability of the software in dealing with all the aspects
of each topic.

« Up-to-date.

Appropriateness: This aspect refers to the appropriateness of the reading
level for the target users. Users should be able to understand the information
presented, so it is essential to check if vocabulary, structure and sentence
length are suitable for their level of knowledge, presenting an acceptable

degree of difficulty.

95 ixio 9 sas cimls



Structure: this attribute focuses on the organization of content, which should
be logically structured and divided among the sections or modules, in order

to help the user to progressively assimilate information.

Evaluation forms:
Some educational institutes or instructors of courses in computer
integration in education provide evaluation forms of computer software as.
Following are examples of some of these forms that are available on the
internet.
= The International Society for Technology in Education' provides an
evaluation form for software programs” . This form includes the
‘closed’ categories: ‘content’, ‘assessment’, ‘technical quality’,
‘instructional design’ and other open categories like ‘strengths’,
‘weaknesses’, ‘the learning strategy’ and ‘recommendations’.

=  O'Neill (1999) whose course ‘Computer Applications in Education’
is on the internet® and the evaluation form, which is part of the
course material and has twenty eight items”.

=  Waynesville R-VI Schools’, which have an evaluation form that
includes thirty items®.

It’s worth noting that the form that O’neill (1999) suggests is
partitioned into categories that constitute the components of the
evaluation, while the form that Waynesville Schools suggest doesn’t
show the categories that it’s composed of.

Online educational software evaluation form:

! at http://www.iste.org

2 at http://cnets.iste.org/teachers/pdf/Appendix_D.pdf

3 at http://www.iol.ie/~aidancbs/tech/course/

4 at http://www.iol.ie/~aidancbs/tech/course/evalform.doc

5 at http://waynesville.k12.mo.us

® at http://waynesville.k12.mo.us/Media/forms/software%20eval %20form.pdf

96 irio 9 sas (il



It’s worth to consider an on-line educational software evaluation
form’, where we can choose the appropriate answer from a list of options
and the site evaluates the total score. The form evaluates the following
software aspects: (1) educational value (2) entertainment value (3) ease of
use (4) design features (5) value (6) package integrity.

Now I describe some of the researches concerning how teachers evaluate

educational software.

Teachers go to software:

Prescott (2001) describes the work of preservice teachers to construct tools
for evaluating educational software: ‘“The student-teachers work in small
groups to explore a range of CALL® software from a university database. In
addition to considering the software within the frameworks of behaviorism,
constructivism and socio-cultural theory, they have to construct instruments
for the purposes of reviewing and evaluating the software”. Prescott (ibid)
says that the preservice teachers construct the evaluation instrument after
they view on-line examples of evaluation instruments and examine
instruments developed by previous cohorts of students. The preservice
teachers construct the evaluation instruments making particular use of the
work of Hubbard (1988) with respect to evaluating software for computer-
assisted language learning. Prescott (2001) reports that Hubbard (1988)
emphasizes the following parameters when evaluating software for language

learning:

« The novelty of the field;

T at

http://www.vitalknowledge.com/reviews/AcadiaUniversityFall2002/software %20

evaluation%20for%?20educators_files/software %20evaluation%20for%20educator

s%20revised.htm

¥ Computer Assisted Language Learning.

97 izio 9 535 cimls



The problem of "skimming" the software (as one might a textbook) and
obtaining an overview;

The complexities of branching and multiple pathways;

Visual, auditory and animation dimensions.

Interactional aspects (extent of student control, extent of software

response to input and so forth).

Prescott (2001) reports that ‘following Hubbard’s ideas the student-

teachers in this course endeavor to develop evaluation instruments which

provide information about how software will help improve a learner’s

proficiency in the target language. This means that apart from considering

the design features and how the software operates, the student-teachers must

also take into account what methodological possibilities are offered as well

as the approach inherent in the software’.

Working in this environment and these conditions, the preservice teachers

develop tools that have five categories:

1.
2.

The purpose or the objectives of the software.

The category of design features, which includes features of electronic
technology such as use of color and sound, highlighting, branching,
layout, graphic features and so forth with the emphasis on the features as
aids to learning.

The software procedure which assesses clarity of instructions,
availability of help, use of hints, definitions, use of examples and
models.

The category of methodology where the software is examined to
determine its potential for allowing a teacher to employ a range of
methods: individual learner to computer; paired or group activity,
whether the software configuration is open to adjustment and can allow

some flexibility in technique and utilization.

98 inio 9 sas (il



5. Approach to language instruction in which a key concern in this
category is to identify evidence in the software and its operation of any

of the approaches studied.

Another study, which is interested in how teachers evaluate software, is
that of Moss (2002-2003) in an investigation which took the form of action
research. “The research is based upon the responses to two initial
questionnaires that were sent out to a sample of schools, including infant,
primary, secondary and colleges. The project sent out 225 questionnaires to
39 schools, and 67 teachers responded from 26 of the schools”. Moss (ibid)
analyzed the data relating to the selection of software written by the
responding teachers ‘to determine a means of evaluation that would fulfill
teachers’ requirements as well as ensuring that such evaluations have
appropriate foundations in acceptable practice when using ICT’. Moss found
that, when evaluating software, ‘the teachers in the sample focused
principally on the outcome of the teaching and learning and the content
which they hoped to deliver. The means by which these tasks were to be
achieved played little or no part in the selection process”. Moss remarks:
“This, therefore, raises questions regarding decisions to use ICT to
accomplish their learning outcomes. If teachers are not valuing those aspects
of computer-based learning and teaching which make the use of the
computer uniquely suitable for a particular learning style or task, why use

the computer?”.
The evaluation tool that we suggest:

Some researchers suggested evaluating software through answering
specific questions as in Buckleitner (1999). Others suggested detailed
aspects as in Dobrica and Niemela (2002), Martin and Shafer (1996) and
Wheeler (2005). Some researchers were interested specifically in methods to

evaluate educational software (We described the methods of Fernandez

99 irio 9 sas (il



(1997), Gerdt et. al (2002) and Stamelos et. al (2000)). We also paid
attention to internet forms which could be used to evaluate software and
discussed how teachers and preservice teachers evaluate educational

software.

Considering the criteria that researchers suggested to evaluate general
software programs we find that most of the aspects that they mentioned are
common, so it’s important to compare the simplicity of these evaluation
methods. The method that Martin and Shafer (1996) suggested seems
relatively difficult to implement for the various relations and percents which
it includes. The methods that Wheeler (2005) and Dobrica and Niemela
(2002) suggested seem very similar and both have sub-categories, but
Wheeler evaluations methods seem more detailed and easier to implement,
especially for teachers, so we recommend to use these methods when

teachers or preservice teachers are involved.

Regarding the evaluation of educational software, we recommend to use
the educational part of the methods of Stamelos et. al (2000); i.e. the
educational effectiveness aspect, for it covers, in a detailed way, the whole
spectrum of educational targets and goals that could be associated with a
software program. To do a quick evaluation of a software program or an
evaluation that doesn’t need deep scrutinizing it’s recommended to use the

online forms suggested above.

It’s recommended to examine further how teachers and preservice teachers
evaluate software programs and how they implement Wheeler’s methods for
evaluating general software programs and the educational part of Stamelos
et. al’s methods. This allows us to examine how much practical and
workable the previous methods are for teachers and to suggest improved

methods that could be implemented more easily by teachers.

100 isio 9 sus sl



References:

Buckleitner, W. (1999). The state of children's software evaluation - yesterday,
today, and in the 21st century. Information Technology in Childhood
Education Annual, 211-220. Retrieved August 24, 2005, from

http://www.childrenssoftware.com/evaluation.html.

Dobrica, L. and Niemela, E., (2002). A survey on Software Architecture
Analysis Methods. Retrieved August 20, 2005, from
http://www.cis.ksu.edu/~dag/740fall02/materials/740f02presentations24.pdf

Fernandez, A., (1997). Evaluation of Computer Based Learning Materials.
UniServe Science News, Volume 7. Retrieved August 25, 2005, from

http://science.uniserve.edu.au/newsletter/vol7/fernandez.html.

Gerdt, Miraftabi and Tukiainen (2002). Evaluating Educational Software
Environments. International Conference on Computers in Education,
Auckland, New Zealand. Retrieved July 25, 2005, from
http://csdl.computer.org/comp/proceedings/icce/2002/1509/00/15090675 .pdf

Hubbard, P. L. (1988). Language teaching approaches, the evaluation of
CALL software, and design implications. In W. M. Flint-Smith (Ed.)
Modern Media in Foreign Language Education. NTC: Illinois. pp227-254

Martin, R. and Shafer, L., (1996). Providing a Framework for Effective
Software Quality Assessment. The 6" Annual International Symposium of
INCOSE: Systems Engineering: Practices and Tools. Retrieved July 23, 2005,

from http://www.mitre.org/work/tech_transfer/pdf/risk_assessment.pdf.

101 isio (9 sus sl



Moss, P., (2002-2003). An assessment of the ways in which teachers evaluate
software. ICT in Schools Research and Evaluation Series. Retrieved August
24, 2005, from
http://www.dfes.gov.uk/ictinschools/uploads/docarchive/No.%2016%20Bursar

ies.doc.

O’Neill, R., (1999). MCE Course Support Materials. Retrieved August 25,

2005, from http://www.iol.ie/~aidancbs/tech/course/

Prescott, (2001). Developing evaluation instruments for CALL software and
English second language websites with pre-service English second language
teachers. ITMELT (Information Technology & Multimedia in English
Language Teaching) Conference. Retrieved August 24, 2005, from
http://elc.polyu.edu.hk/conference/papers2001/prescott.htm.

Stamelos, I.; Refanidis, I.; Katsaros, P.; Tsoukias, A.; Pombortsis A. and
Vlahavas, I.., (2000). An Adaptable Framework for Educational Software
Evaluation, in Eds: S. Zanakis, G. Doukidis, I. Anagnostopoulos, Recent
Developments and Applications in Decision Making, Kluwer Academic
Publishers, pp. 347-360. Retrieved July 25, 2005, from
http://citeseer.ist.psu.edu/cache/papers/cs/26696/http:zSzzSzdelab.csd.auth.g
rzSz~katsaroszSzEdSoftwareEvaluation.pdf/stamelosOOadaptable.pdf.

Wheeler, D., (2005). How to Evaluate Open Source Software / Free Software
(OSS/FS) Programs. Retrieved August 20, 2005, from
http://www.dwheeler.com/oss_fs_eval.html .

102 isio (9 sus sl



.

1 oS

zolms ple Sy Lusmls ol Jtlasy pas i) Tage olas oy sa JUEN 13a laal s

ilie wigaly iogite wlgol o Gatimd Wyosll Jpladll wisal ool JSio Ligy )5 Lngul>
Uiy 1 BT pyaa ooy o 1 T 501 8Ll Ly 09 8ol S5 s
— by el Tl ylas i g8 Jiall BT Bas el gl i a3l sl
Sl nalali= Sl palall dpii Ciogll s Lypgl> gl Jalads sl 3 onaleo
Db Jlain gl sl pellaninod G2l gl 7ol T Jalassy pasiid 152 el
Tyl ol Jalody sy pagiaw Cpalao— by Guelas ylad o Bolie Yl § passdw LS

oy

S0

NMINN MM NIIWNY DXAIWN NNPDI NPDY NN 73 NN DY MIVHRN NNN

DY BT NIIYNN P XD 19IND NN YN MM YYD 191N AWNNH
NN AYNHD IUN DN DNV DDV PIAM ,DNV NN DIND DY DONIND
DMIPNN INND NN TNIY DIVN LTHY NOWNN 9D 1IN MYNINN MMPN
NON DNNM TPPO .2UWNHD MIDIND INNNY DIYINNDY DINN NHIWNL DIPOIVY
NN N2 TIYNY YT 9NY IX TOX DD 9INAY IRNND DMIVWINNDY DINNID Y NY
NPPO DARNN TNXD NN YIDOIYWD SWRN DVIDIWA DNY MYITTH NIDIND
MYWYH OMN VYMY 751 IRNIND DIVYINNDY DINNY 1YY 0) NONR DNNOM

.NOIN VNN NN NNIDY PIYNY DNPIMNIY DY NNV

103 isio (9 sas ciasls>



